Java Language Keywords
abstract Java Keyword

The abstract keyword may modify a class or a method.

An abstract class can be extended (subclassed) but cannot be instantiated directly.

An abstract method is not implemented in the class in which it is declared, but must be overridden in some

subclass.

Examples

public abstract class MyClass

{

}

public abstract String myMethod();

Remarks

A class with an abstract method is inherently abstract and must be declared abstract. An abstract class cannot be instantiated. 

A subclass of an abstract class can only be instantiated if it implements all of the abstract methods of

its superclass. Such classes are called concrete classes to differentiate them from abstract classes.



If a subclass of an abstract class does not implement all of the abstract methods of its superclass, the

subclass is also abstract.



The abstract keyword cannot be applied to methods that are static, private or final, since such methods

cannot be overridden and therefore cannot be implemented in subclasses.



No methods of a final class may be abstract since a final class cannot be subclassed.
boolean Java Keyword

boolean is a Java primitive type.

A boolean variable may take on one of the values true or false.

Examples

boolean valid = true;

if (valid)

{

<statement>

}

Remarks

A boolean variable may only take on the values true or false. A boolean may not be converted to or

from any numeric type.



Expressions containing boolean operands can contain only boolean operands. 

The Boolean class is a wrapper class for the boolean primitive type.
break Java Keyword

The break keyword is used to prematurely exit a for, while, or do loop or to mark the end of a case block in a

switch statement.

Examples

for (i=0; i<max; i++)

{

if (<loop finished early>)

{

break;

}

}

int type = <some value>;

switch (type)

{

case 1:

<statement>

break;

case 2:

<statement>

break;

default:

<statement>

}

Remarks

break always exits the innermost enclosing while, for, do or switch statement. 

byte Java Keyword

byte is a Java primitive type.

A byte can store an integer value in the range [−128, 127].

Examples

byte b = 124;

Remarks

The Byte class is a wrapper class for the byte primitive type. It defines MIN_VALUE and

MAX_VALUE constants representing the range of values for this type.

All integer literals in Java are 32−bit int values unless the value is followed by l or L as in 235L,

indicating the value should be interpreted as a long.

case Java Keyword

The case is used to label each branch in a switch statement.

Examples

int arg = <some value>;

switch (arg)

{

case 1:

<statements>

break;

case 2:

<statements>

break;

default:

<statements>

break;

}

Remarks

A case block does not have an implicit ending point. A break statement is typically used at the end of

each case block to exit the switch statement.

Without a break statement, the flow of execution will flow into all following case and/or default

blocks.

catch Java Keyword

The catch keyword is used to define exception handling blocks in try−catch or try−catch−finally statements.

Examples

try

{

<block that may throw exceptions>

}

catch (<java.lang.Exception or subclass> e)

{

<code to handle exception e>

}

try

{

<block that may throw different exceptions>

}

catch (FooException e)

{

<code to handle FooException e>

}

catch (BarException e)

{

<code to handle BarException e>

}

try

{

<block that may throw exceptions>

}

catch (<java.lang.Exception or subclass> e)

{

<code to handle exception e>

}

finally

{

<statements that execute with or without exception>

}

Remarks

The opening and closing curly braces { and } are part of the syntax of the catch clause and may not be

omitted even if the clause contains a single statement.

Every try block must have at least one catch or finally clause. 

If a particular exception class is not handled by any catch clause, the exception propagates up the call

stack to the next enclosing try block, recursively. If an exception is not caught by any enclosing try

block, the Java interpretor will exit with an error message and stack trace.

char Java Keyword

char is a Java primitive type.

A char variable can store a single Unicode character.

Examples

char delimiter = ';';

Remarks

The following char constants are available:

\b − Backspace 

\f − Form feed 

\n − Newline 

\r − Carriage return 

\t − Horizontal tab 

\' − Single quote 

\" − Double quote 

\" − Backslash 

\xxx − The Latin−1 character with the encoding xxx. The \x and \xx forms are legal but may

lead to confusion.



\uxxxx − The Unicode character with the hexadecimal encoding xxxx. 



The Character class includes useful static methods for dealing with char variables, including isDigit(),

isLetter(), isWhitespace() and toUpperCase().



char values are unsigned. 

class Java Keyword

The class keyword is used to declare a new Java class, which is a collection of related variables and/or

methods.

Classes are the basic building blocks of object−oriented programming. A class typically represents some

real−world entity such as a geometric Shape or a Person. A class is a template for an object. Every object is an

instance of a class.

To use a class, you instantiate an object of the class, typically with the new operator, then call the classes

methods to access the features of the class.

Examples

public class Rectangle

{

float width;

float height;

public Rectangle(float w, float h)

{

width = w;

height = h;

}

public float getWidth()

{

return width;

}

public float getHeight()

{

return height;

}

}

Remarks

None.

continue Java Keyword

The continue keyword is used to skip to the next iteration of a for, while, or do loop.

Examples

for (i=0; i<max; i++)

{

<statements>

if (<done with this iteration>)

{

continue;

}

<statements>

}

Remarks

continue always skips to the next iteration of the innermost enclosing while, for or do statement. 

default Java Keyword

The default keyword is used to label the default branch in a switch statement.

Examples

int arg = <some value>;

switch (arg)

{

case 1:

<statements>

break;

case 2:

<statements>

break;

default:

<statements>

break;

}

Remarks

A default block does not have an implicit ending point. A break statement is typically used at the end

of each case or default block to exit the switch statement upon completion of the block.



Without a default statement, a switch statement whose argument matches no case blocks will do

nothing.



do Java Keyword

The do keyword specifies a loop whose condition is checked at the end of each iteration.

Examples

do

{

<statements>

}

while (!found);

Remarks

The body of a do loop is always executed at least once. 

The semicolon after the condition expression is always required. 

double Java Keyword

double is a Java primitive type.

A double variable may store a double−precision floating point value.

Examples

double ratio = .01;

double diameter = 6.15;

double height = 1.35E03; // 1.35 * 103 or 1350.0

double height = 1e−2; // 1.0 * 10−2 or 0.01

Remarks

Since floating point data types are approximations of real numbers, you should generally never

compare floating point numbers for equality.

Java floating point numbers can represent infinity and NaN (not a number). The Double wrapper class

defines the constants MIN_VALUE, MAX_VALUE, NEGATIVE_INFINITY,

POSITIVE_INFINITY and NaN.

else Java Keyword

The else keyword is always used in association with the if keyword in an if−else statement. The else clause is

optional and is executed if the if condition is false.

Examples

if (condition)

{

<statements>

}

else

{

<statements>

}

Remarks

None.

extends Java Keyword

The extends keyword is used in a class or interface declaration to indicate that the class or interface being

declared is a subclass of the class or interface whose name follows the extends keyword.

Examples

public class Rectangle extends Polygon

{

}

Remarks

In the example above, the Rectangle class inherits all of the public and protected variables and

methods of the Polygon class.



The Rectangle class may override any non−final method of the Polygon class. 

A class may only extend one other class. 

false Java Keyword

The false keyword represents one of the two legal values for a boolean variable.

Examples

boolean isComplete = false;

Remarks

None.

final Java Keyword

The final keyword may be applied to a class, indicating the class may not be extended (subclassed).

The final keyword may be applied to a method, indicating the method may not be overridden in any subclass.

Examples

public final class MyFinalClass

{

}

public class MyClass

{

public final String myFinalMethod()

{

<statements>

}

}

Remarks

A class may never be both abstract and final. abstract means the class must be extended, while final

means it cannot be.



A method may never be both abstract and final. abstract means the method must be overridden, while

final means it cannot be.



finally Java Keyword

The finally keyword is used to define a block that is always executed in a try−catch−finally statement.

A finally block typically contains cleanup code that recovers from partial execution of a try block.

Examples

try

{

<block that may throw exceptions>

}

catch (<java.lang.Exception or subclass> e)

{

<code to handle exception e>

}

finally

{

<statements that execute with or without exception>

}

Remarks

The opening and closing curly braces { and } are part of the syntax of the finally clause and may not

be omitted even if the clause contains a single statement.



Every try block must have at least one catch or finally clause. 

If any portion of the try block is executed, the code in a finally block is always guaranteed to be

executed whether an exception occurs or not and independent of whether the try or catch blocks

contain return, continue or break statements.



In the absence of exceptions, control flows through the try block and then into the finally block. 

If an exception occurs during execution of the try block and the appropriate catch block contains a

break, continue or return statement, control flows through the finally block before the break, continue

or return occurs.



float Java Keyword

float is a Java primitive type.

A float variable may store a single−precision floating point value.

Examples

float ratio = .01;

float diameter = 6.15;

float height = 1.35E03; // 1.35 * 103 or 1350.0

float height = 1e−2; // 1.0 * 10−2 or 0.01

Remarks

The following rules apply to this keyword's use:

Floating point literals in Java always default to double−precision. To specify a single−precision literal

value, follow the number with f or F, as in 0.01f.



Since floating point data types are approximations of real numbers, you should generally never

compare floating point numbers for equality.



Java floating point numbers can represent infinity and NaN (not a number). The Float wrapper class

defines the constants MIN_VALUE, MAX_VALUE, NEGATIVE_INFINITY,

POSITIVE_INFINITY and NaN.



for Java Keyword

The for keyword specifies a loop whose condition is checked before each iteration.

Examples

int i;

for (i=0; i<max; i++)

{

<statements>

}

Remarks

The for statement takes the form for(initialize; condition; increment)

The initialize statement is executed once as the flow of control enters the for statement.

The condition is evaluated before each execution of the body of the loop. The body of the loop is

executed if the condition is true.

The increment statement is executed after each execution of the body of the loop, before the condition

is evaluated for the next iteration.



if Java Keyword

The if keyword indicates conditional execution of a block. The condition must evaluate to a boolean value.

Examples

if (condition)

{

<statements>

}

if (condition)

{

<statements>

}

else

{

<statements>

}

Remarks

An if statement may have an optional else clause containing code that is executed if the condition is

false.



Expressions containing boolean operands can contain only boolean operands. 

implements Java Keyword

The implements keyword is used in a class declaration to indicate that the class being declared provides

implementations for all methods declared in the interface whose name follows the implements keyword.

Examples

public class Truck implements IVehicle

{

}

Remarks

In the example above, the Truck class must provide implementations for all methods declared in the

IVehicle interface.



The Truck class is otherwise independent; it may declare additional methods and variables and may

extend another class.



A single class may implement multiple interfaces. 

import Java Keyword

The import keyword makes one class or all classes in a package visible in the current Java source file.

Imported classes can be referened without the use of fully−qualified class names.

Examples

import java.io.File;

import java.net.*;

Remarks

Many Java programmers use only specific import statements (no '*') to avoid ambiguity when

multiple packages contain classes of the same name.



instanceof Java Keyword

The instanceof keyword is used to determine the class of an object.

Examples

if (node instanceof TreeNode)

{

<statements>

}

Remarks

In the example above, if node is an instance of the TreeNode class or is an instance of a subclass of

TreeNode, the instanceof expression evaluates to true.



int Java Keyword

int is a Java primitive type.

A int variable may store a 32−bit integer value.

Examples

int number = 5;

int octalNumber = 0377;

int hexNumber = 0xff;

Remarks

The Integer class is a wrapper class for the int primitive type. It defines MIN_VALUE and

MAX_VALUE constants representing the range of values for this type.



All integer literals in Java are 32−bit int values unless the value is followed by l or L as in 235L,

indicating the value should be interpreted as a long.



interface Java Keyword

The interface keyword is used to declare a new Java interface, which is a collection of methods.

Interfaces are a powerful feature of the Java language. Any class may declare that it implements one or more

interfaces, meaining it implements all of the methods defined in those interfaces.

Examples

public interface IPolygon

{

public float getArea();

public int getNumberOfSides();

public int getCircumference();

}

Remarks

Any class that implements an interface must provide implementations for all methods in that interface. 

A single class may implement multiple interfaces. 

long Java Keyword

long is a Java primitive type.

A long variable may store a 64−bit signed integer.

Examples

long number = 5;

long anotherNumber = 34590L;

long octalNumber = 0377;

long hexNumber = 0xffl;

Remarks

The Long class is a wrapper class for the long primitive type. It defines MIN_VALUE and

MAX_VALUE constants representing the range of values for this type.



All integer literals in Java are 32−bit int values unless the value is followed by l or L as in 235L,

indicating the value should be interpreted as a long.



native Java Keyword

The native keyword may be applied to a method to indicate that the method is implemented in a language other then Java.

Examples

native String getProcessorType();

Remarks

Native methods are beyond the scope of this documentation. 

new Java Keyword

The new keyword is used to create a new instance of a class.

Examples

String sName = new String();

Float fVal = new Float(0.15);

Remarks

The argument following the new keyword must be a class name followed by a series of constructor

arguments in required parentheses.

The collection of arguments must match the signature of a constructor for the class.

The type of the variable on the left side of the = must be assignment−compatible with the class or

interface being instantiated.



null Java Keyword

null is a Java reserved word representing no value.

Examples

Integer i;

i = null;

String s;

if (s != null)

{

<statements>

}

Remarks

Assigning null to a non−primitive variable has the effect of releasing the object to which the variable

previously referred.



null cannot be assigned to variables of primitive types (byte, short, int, long, char, float, double,

boolean)

package Java Keyword

The package keyword specifies the Java package in which the classes declared in a Java source file reside.

Examples

package com.mycompany;

public class MyClass

{

}

Remarks

The package statement, if present, must be the first non−comment text in a Java source file. 

In the example above, the fully−qualified class name of the MyClass class is

com.mycompany.MyClass.



If a Java source file does not contain a package statement, the classes defined in the file are in the

default package. Note that classes in the default package may not be referenced from classes in

non−default packages.

private Java Keyword

The private keyword is an access control modifier that may be applied to a class, a method or a field (a

variable declared in a class).

Examples

public class MyPublicClass

{

private class MyPrivateClass

{

}

private int i;

private String myMethod()

{

<statements>

}

}

Remarks

A private (inner) class, method or field may only be referenced from within the class in which it is

declared. It is not visible outside the class or to subclasses.



The default access for all class members is package access, meaning that unless a specific access

control modifier is present the class members are accessible from within any class in the same

package.

protected Java Keyword

The protected keyword is an access control modifier that may be applied to a class, a method or a field (a

variable declared in a class).

Examples

public class MyPublicClass

{

protected class MyPrivateClass

{

}

protected int i;

protected String myMethod()

{

<statements>

}

}

Remarks

A protected class, method or field may be referenced from within the class in which it is declared, any

other classes in the same package, and any subclasses regardless of the package in which a subclass is

declared.



The default access for all class members is package access, meaning that unless a specific access

control modifier is present the class members are accessible from within any class in the same

package.

public Java Keyword

The public keyword is an access control modifier that may be applied to a class, a method or a field (a

variable declared in a class).

Examples

public class MyPublicClass

{

public class MyPrivateClass

{

}

public int i;

public String myMethod()

{

<statements>

}

}

Remarks

A public class, method or field may only be referenced from any other class or package. 

The default access for all class members is package access, meaning that unless a specific access

control modifier is present the class members are accessible from within any class in the same

package.

return Java Keyword

The return keyword causes a method to return to the method that called it, passing a value that matches the

return type of the returning method.

Examples

public void myVoidMethod()

{

<statements>

return;

}

public String myStringMethod()

{

String s = "my response";

return s;

}

public int myIntMethod()

{

int i = 5;

return(i);

}

Remarks

If the method has a non−void return type, the return statement must have an argument of the same or

a compatible type.



The parentheses surrounding the return value are optional. 



short Java Keyword

short is a Java primitive type.

A short variable may store a 16−bit signed integer.

Examples

short number = 5;

short octalNumber = 0077;

short hexNumber = 0xff;

Remarks

The Short class is a wrapper class for the short primitive type. It defines MIN_VALUE and

MAX_VALUE constants representing the range of values for this type.



All integer literals in Java are 32−bit int values unless the value is followed by l or L as in 235L,

indicating the value should be interpreted as a long.

static Java Keyword

The static keyword may be applied to an inner class (a class defined within another class), method or field (a

member variable of a class).

Examples

public class MyPublicClass

{

public final static int MAX_OBJECTS = 100;

static int _numObjects = 0;

static class MyStaticClass

{

}

static int getNumObjects()

{

}

}

Remarks

In general, the static keyword means that the entity to which it is applied is available outside any particular

instance of the class in which the entity is declared.



A static (inner) class may be instantiated and reference by other classes as though it were a top−level class.

In the example above, code in another class could instantiate the MyStaticClass class by qualifiying it's

name with the containing class name, as MyClass.MyStaticClass.



A static field (member variable of a class) exists once across all instances of the class. 

A static method may be called from outside the class without first instantiating the class. Such a reference

always includes the class name as a qualifier of the method call. In the example above code outside the

MyClass class would invoke the getNumObjects() static method as MyClass.getNumObjects().



The pattern:

public final static <type> varName = <value>;

is commonly used to declare class constants that may be used from outside the class. A reference to such a

constant is qualified with the class name. In the example above, another class could reference the

MAX_OBJECTS constant as MyClass.MAX_OBJECTS.

super Java Keyword

The super keyword refers to the superclass of the class in which the keyword is used.

Examples

public class MyClass

{

public MyClass(String arg)

{

super(arg);

}

public String myStringMethod()

{

return super.otherStringMethod();

}

Remarks

super as a standalone statement represents a call to a constructor of the superclass. 

super.<methodName>() represents a call to a method of the superclass. This usage is only necessary

when calling a method that is overridden in this class in order to specify that the method should be

called on the superclass.

switch Java Keyword

The switch statement is used to select execution of one of multiple code blocks based on an expression.

Examples

int arg = <some value>;

switch (arg)

{

case 1:

<statements>

break;

case 2:

<statements>

break;

default:

<statements>

break;

}

char arg = <some value>;

switch (arg)

{

case 'y':

case 'Y':

<statements>

break;

case 'n':

case 'N':

<statements>

break;

default:

<statements>

break;

}

Remarks

The switch condition must evaluate to a byte, char, short or int. 

A case block does not have an implicit ending point. A break statement is typically used at the end of

each case block to exit the switch statement.



Without a break statement, the flow of execution will flow into all following case and/or default

blocks.

synchronized Java Keyword

The synchronized keyword may be applied to a method or statement block and provides protection for critical

sections that should only be executed by one thread at a time.

Examples

public class MyClass

{

public synchronized static String mySyncStaticMethod()

{

}

public synchronized String mySyncMethod()

{

}

{

public class MyOtherClass

{

Object someObj;

public String myMethod()

{

<statements>

synchronized (someObj)

{

<statements affecting someObj>

}

}

}

Remarks

The synchronized keyword prevents a critical section of code from being executed by more than one

thread at a time.



When applied to a static method, as with MySyncStaticMethod in the examples above, the entire class

is locked while the method is being executed by one thread at a time.



When applied to an instance method, as with MySyncMethod in the examples above, the instance is

locked while being accessed by one thread at at time.



When applied to an object or array, the object or array is locked while the associated code block is

executed by one thread at at time.

this Java Keyword

The this keyword refers to the current instance.

Examples

public class MyClass

{

int number;

public MyClass(int number)

{

this.number = number;

}

}

Remarks

The this keyword is used to refer to the current instance when a reference may be ambiguous. 

In the example above, the constructor argument number has the same name as a member variable of

the class. this.number means specifically the number member variable of this instance of MyClass.



throw Java Keyword

The throw keyword is used to raise an exception.

Examples

import java.io.IOException;

public class MyClass

{

public method readFile(String filename) throws IOException

{

<statements>

if (error)

{

throw new IOException("error reading file");

}

}

}

Remarks

The throw statement takes a java.lang.Throwable as an argument. The Throwable is propagated up the

call stack until it is caught by an appropriate catch block.



Any method that throws an exception that is not a RuntimeException must also declare the exceptions

it throws using a throws modifier on the method declaration.



throws Java Keyword

The throws keyword may be applied to a method to indicate the method raises particular types of exceptions.

Examples

import java.io.IOException;

public class MyClass

{

public method readFile(String filename) throws IOException

{

<statements>

if (error)

{

throw new IOException("error reading file");

}

}

}

Remarks

The throws keyword takes a comma−separated list of java.lang.Throwables as an argument. 

Any method that throws an exception that is not a RuntimeException must also declare the exceptions

it throws using a throws modifier on the method declaration.



The caller of a method with a throws clause is required to enclose the method call in a try−catch

block.



transient Java Keyword

The transient keyword may be applied to member variables of a class to indicate that the member variable

should not be serialized when the containing class instance is serialized.

Examples

public class MyClass

{

private transient String password;

}

Remarks

None.

try Java Keyword

The try keyword is used to enclose blocks of statements that might throw exceptions.

Examples

try

{

<block that may throw exceptions>

}

catch (<java.lang.Exception or subclass> e)

{

<code to handle exception e>

}

try

{

<block that may throw different exceptions>

}

catch (FooException e)

{

<code to handle FooException e>

}

catch (BarException e)

{

<code to handle BarException e>

}

try

{

<block that may throw exceptions>

}

catch (<java.lang.Exception or subclass> e)

{

<code to handle exception e>

}

finally

{

<statements that execute with or without exception>

}

Remarks

Every try block must have at least one catch or finally clause. 

If a particular exception class is not handled by any catch clause, the exception propagates up the call

stack to the next enclosing try block, recursively. If an exception is not caught by any enclosing try

block, the Java interpretor will exit with an error message and stack trace.

true Java Keyword

The true keyword represents one of the two legal values for a boolean variable.

Examples

boolean isComplete = true;

Remarks

None.

void Java Keyword

The void keyword represents a null type.

Examples

public class MyClass

{

public void doSomething();

{

<statements>

return;

}

}

Remarks

void may be used as the return type of a method to indicate the method does not return a value. 



volatile Java Keyword

The volatile keyword may be used to indicate a member variable that may be modified asynchronously by more than one thread.

Note: the volatile keyword is not implemented in many Java Virtual Machines.

Examples

public class MyClass

{

volatile int sharedValue;

}

Remarks

volatile is intended to guarantee that all threads see the same value of the specified variable. 

None.

while Java Keyword

The while keyword specifies a loop that is repeated as long as a condition is true.

Examples

while (!found)

{

<statements>

}

Remarks

None.

