
Intermediate Swing
Skill Level: Introductory

Michael Abernethy (mabernet@us.ibm.com)
Author

29 Jun 2005

This tutorial builds on Introduction to Swing, which introduced the basics of Swing
programming and the flight reservation system application. In this hands-on tutorial,
Swing programmer Michael Abernethy walks you through more advanced Swing
techniques like writing thread-safe code, building custom components, and
customizing the look and feel to create a more polished and powerful UI.

Section 1. Before you start

About this tutorial

This tutorial is for those of you who have experience in putting together Swing
applications, but would like to build on that knowledge with some more advanced
techniques -- things that you might not be able to grasp just by looking at the Swing
API. If you are thinking of taking this tutorial, you should be familiar with basic Swing
concepts, such as Swing UI widgets, layouts, events, and data models. If you still
think you need to review those concepts, be sure to review the Introduction to Swing
tutorial, which covers all these areas and gives you the background you need to
begin this tutorial.

During the course of this tutorial, you will be introduced to aspects of Swing beyond
the basic components and applications. These areas of study, while more difficult to
learn and grasp, are also more powerful and allow you to create better applications.
The more advanced Swing concepts covered in this tutorial are:

• Understanding the JTable, and some of its many confusing and difficult
concepts

• Writing thread-safe Swing code

• Creating a custom component

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 30

mailto:mabernet@us.ibm.com
http://www.ibm.com/developerworks/edu/j-dw-java-intswing-i.html
http://www.ibm.com/legal/copytrade.shtml

• Creating a completely custom look and feel

Tools and source downloads

To complete this tutorial, you'll need the following:

• JDK 5.0.

• An IDE or text editor. I recommend Eclipse (see Resources for more
information on Eclipse).

• The swing2.jar for the flight reservation system.

Section 2. The sample application

Refresher

Before you move on to the new concepts in this tutorial, let's revisit the sample
application you started in the previous tutorial, the flight reservation system. For
those of you that skipped the first tutorial, this summary should help you quickly
grasp what the application is about.

If you'll recall, the application tries to model a flight reservation system that would sit
on your desktop. It allows the user to select a departure and destination city, and
then search for flights that match the search criteria. These flights are displayed in a
table, and the user can select the desired flight and purchase any number of tickets.

The application is very basic at this point; just by looking at it, you should be able to
understand its role, as well the current limitations that we will address in this tutorial.

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 2 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://java.sun.com/j2se/1.5.0/download.jsp
http://www.eclipse.org/downloads/index.php
swing2.jar
http://www.ibm.com/developerworks/edu/j-dw-java-intswing-i.html
http://www.ibm.com/legal/copytrade.shtml

Limitations of the application

Looking at the application as it exists now, you may think that it has everything it
needs to work. Well, that's one way of looking at it -- it does have everything it needs
to work, but it doesn't have everything it needs to work well. This is what separates
the bad applications from the good ones -- the finer points that make the UI
experience well-rounded. Although the application as it currently stands would work
as a flight reservation system, how many of you reading this now would like to see
something like it on your desktop? Probably not many. It looks basic, it lacks polish,
and it's not very user friendly at all.

That's what this tutorial's main focus is: improving the user experience in a Swing
application, and turning a functional application into a marketable application. You'll
learn how to give your applications the improvements they need to look and feel like
a professional application. Swing offers the tools to do this with less effort than you
may imagine, and there are many third-party applications, some of which I'll discuss
in this tutorial, that fill the gaps that Swing doesn't address.

Sample application enhancements

Here's a look at the areas of focus on in this tutorial, which will turn the basic
application into a professional one:

• JTable improvements. Right now, the table that presents the results of a
search to the user is pretty boring and not interactive at all. The results
have no order, the data cannot be sorted, and the table cannot be

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 30

http://www.ibm.com/legal/copytrade.shtml

modified by the user to improve the view of it; in addition, it looks boring,
with only white backgrounds, black text, and blue highlights. We can
change all of that -- we can allow the user to sort columns, we can
change how every cell looks, and we can change the table's preferences.

• Thread issues. Threading is one of the most tricky and difficult areas to
understand in programming; unfortunately, with Swing, it doesn't get any
easier. Fortunately, there are Sun classes not released with Swing that
make working with threads in Swing much easier and eliminate many of
the pitfalls that usually accompany threaded programming.

• Custom components. Because the usual widgets that accompany Swing
are sometimes just plain boring, or because they might not function in the
way we'd like, we can create custom components that will do exactly what
we want them to. In this application, that Purchase button is just plain
boring looking -- it's an important button and should reflect that fact. It will
when we're done with it.

• Custom look and feel. Perhaps the coolest thing about Swing is its
ability to change the look and feel of an entire application without affecting
how the application itself functions. While it is incredibly easy to change
the look and feel of an application, it is incredibly difficult to create a new
look and feel from scratch. Because we want our flight reservation system
to have a look and feel all its own, we'll create a simple example of a new
look and feel to show how it can be done.

Section 3. Intermediate JTable

Introduction

If you've ever worked with the JTable before, you've surely encountered some of the
difficult concepts it brings into play. Probably the most common complaint about the
JTable from UI developers is that the basic version is just too simple, and is of no
use in a real application. However, a more advanced JTable, one that becomes
useful, adds many layers of complexity that not all developers want to deal with.
Well, they've got no choice.

First, let's think about what's insufficient in the flight reservation JTable. At first
glance, you can see that the colors that have chosen for the cells, or for highlighting,
might not be what you desire. Or perhaps you don't want those gridlines showing up.
So, that's one thing you can change: the look of it.

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 4 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

What about the feel, though? What else is wrong with the basic JTable? Well, for
one, it doesn't provide any sorting mechanism. That's a big gap -- a JTable presents
data to the user, and it should let the user decide how to arrange that data once it's
on the screen.

What about some other little tidbits? How about text alignment? Users are often
accustomed to having text left-aligned and numbers right-aligned. What about
editing the contents of the cell? Some users expect that kind of behavior as well.

OK, OK, that's enough JTable-bashing. Instead of talking about how lacking a simple
JTable is, let me show you how to utilize its potential and turn the plain JTable in the
flight reservation system into a nicer table that users can tweak to improve their UI
experience.

JTable properties

The easiest way to start changing the JTable is to start changing its properties. The
JTable class offers many, many functions that allow you to quickly tailor its look
and feel without doing any overly difficult coding. As you've probably figured out by
now, these functions for changing the properties are good for simple instances, but
aren't sufficient for more complex needs (you'll find this a recurring theme throughout
Swing). These functions include:

• setAutoCreateColumnsFromModel():This function allows you to tell
the table to automatically create the columns from the TableModel; in
common practice, it should be set to true.

• setAutoResizeMode(): This changes the behavior when the user
resizes the columns in the JTable. There are five possible values, and
each value changes how the other columns' sizes change when the user
resizes one column:

• AUTO_RESIZE_OFF: The other columns don't change at all.

• AUTO_RESIZE_NEXT_COLUMN: Only the size of the next column is
changed.

• AUTO_RESIZE_SUBSEQUENT_COLUMNS: The size of every column
after the one being resized is changed.

• AUTO_RESIZE_LAST_COLUMN: Only the last column is resized,
ensuring that the columns always take up exactly the same amount of
space as the table itself and will thus not require horizontal scrolling

• AUTO_RESIZE_ALL_COLUMNS: All the columns are changed equally
as the user-selected column is resized

• setCellSelectionEnabled(): Setting this to true allows the user to
select a single cell; under the default behavior, the user would select a
row.

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 30

http://www.ibm.com/legal/copytrade.shtml

• setColumnSelectionAllowed(): If this is set to true, when a user
clicks on a cell, that cell's entire column will be selected

• setGridColor(): Changes the grid color of the table.

• setIntercellSpacing(): Changes the spacing between each cell,
and thus the size of the grid lines.

• setRowHeight(): Changes the row height of the table.

• setRowSelectionAllowed(): If this is set to true, when a user clicks
on a cell, the entire row containing that cell is selected.

• setSelectionBackground(): Changes the background color of a
selected cell.

• setSelectionForeground(): Changes the foreground color of a
selected cell.

• setBackground(): Changes the background color of a non-selected
cell.

• setForeground(): Changes the foreground color of a non-selected
cell.

• setShowGrid(): Allows you to hide the grid entirely.

As you can see, there's plenty you can do to a JTable without much effort. These
properties allow you to tailor the JTable to your own needs in an application.
However, as nice as these little properties are, they don't address some of the more
pressing needs of the example application.

TableRenderer

In the previous section, you saw that you could change the foreground color and
background color of a cell when it is selected and unselected. That's a nice feature,
but it's limited: What if you want to change the font as well? What if you want to
change the color depending on the specific value of that cell?

This more advanced drawing of a table cell is handled by a interface called a
TableRenderer. By creating a class that implements this interface, you can create
a custom palette to do any kind of painting you need to do. The JTable will then pass
all painting duties to this new class.

For the example application, we'll change the way the table looks to match the
following rules:

• Give unselected rows a white background and a black plain text
foreground.

• Give selected rows a green background and a black text foreground.

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 6 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• Give rows that contain sold-out flights a dark gray background and a
white text foreground.

The first step to using the new TableRenderer is to tell the JTable to use it instead
of its custom built-in renderer. (The JTable has a default table cell renderer, which
we will be overriding to do our own painting.) By attaching the renderer to
Object.class, we are in effect telling the JTable to use our custom renderer for
every cell.

getTblFlights().setDefaultRenderer(Object.class, new FlightTableRenderer());

Now that that step is quickly out of the way, let's look at the
FlightTableRenderer itself. The FlightTableRenderer takes advantage of a
built-in Swing class, the DefaultCellRenderer, which provides a good starting
point. We can extend and override this class's only method to do our own painting.
The actual painting logic should be self-explanatory.

public class FlightTableRenderer extends DefaultTableCellRenderer
{
public Component getTableCellRendererComponent(JTable table,

Object value,
boolean isSelected,
boolean hasFocus,
int row,
int column)

{
setText(value.toString());

if (((Integer)table.getValueAt(row, 3)).intValue() < 1)
{

setBackground(Color.GRAY);
setForeground(Color.WHITE);

}
else
{

if (isSelected)
{

setBackground(Color.GREEN);
setForeground(Color.BLACK);

}
else
{

setBackground(Color.WHITE);
setForeground(Color.BLACK);

}
}
return this;

}
}

After inserting this code into the example application, the table of results looks
drastically different. It also conveys more information to the user, as it grays out
flights that are already sold out:

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 30

http://www.ibm.com/legal/copytrade.shtml

TableModel

In the introductory tutorial, you learned how to use TableModels -- and,
specifically, how to use them to more easily manage your data. However, besides
handling the way in which data is presented in the table, the TableModel can also
change the behavior of the table in two distinct ways.

• The TableModel tells the JTable how to align the data in each column.
What exactly does this mean? Well, for example, Strings are typically
left aligned, and numbers and dates are typically right aligned. Numbers
representing currency amounts are typically aligned by the decimal point.
TableModel contains a method called getColumnClass() that
handles all the alignment issues. Fortunately, the JTable has numerous
built-in TableRenderers that know how to handle certain classes,
including Integers, Strings, and Doubles. You would change the
alignment by providing the following function in your table model:

public Class getColumnClass(int col)
{

if (col == 2 || col == 3)
return Integer.class;

else
return String.class;

}

Unfortunately, this call conflicts with the code we created for the
FlightCellRenderer and attached to Object.class. This is just a
case of too many examples for the limited amount of code that we have,
so you'll have to believe me that this works, and that the JTable knows
how to align certain classes. With the existing FlightCellRenderer in

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 8 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

our example, to get our data aligned correctly, we'd need to modify our
code slightly, and add lines for setHorizontalAlignment() to align
the data in the way that we'd like.

if (column == 2 || column == 3)
setHorizontalAlignment(SwingConstants.RIGHT);

else
setHorizontalAlignment(SwingConstants.LEFT);

• The TableModel allows individual cells to be edited. Much like default
cell renderers, the JTable provides default cell editors for some built-in
classes, like String and Integer. In other words, it knows how to
provide editing capabilities for these built-in classes. The TableModel
only needs to tell the JTable which cells are allowed to be edited and how
to set the values once the editing is complete, and the JTable will handle
the rest.

public boolean isCellEditable(int row, int col)
{

return col == 3;
}

public void setValueAt(Object value, int row, int col)
{

if (col == 3)
((Flight)data.get(row)).setRemainingTixx(new Integer(value.toString()).intValue());

}

Now, you may ask, "What if I don't want to use one of Swing's built-in
editors?" Well, my initial answer would be, "That's a shame." Creating a
custom editor -- one to edit dates cleanly, for instance -- is very difficult.
As you've seen in other areas, the simplicity of letting Swing handle the
editing of built-in classes is offset by the complexity of creating new
classes for editing classes that aren't built into the JTable. The issue of
creating a new class to edit cells is beyond the scope of this tutorial, and if
you decide you absolutely need this feature, don't say I didn't warn you.
For those of you interested in learning about how to create a custom cell
editor, check out Resources for a site that offers a how-to.

Sorting

Users of tables -- whether they're tables in a desktop application or a Web
application -- have come to expect the ability to sort the data in those tables by
column. In other words, they expect to be able to click on the column heading and
see the data rearranged to match either an ascending or descending order indexed
on the column that was clicked.

Unfortunately, the JTable doesn't have this feature built into it. This is a real shame
because nearly every user expects it. This feature is already built into some potential
future versions of Swing; but because so many people have come to expect it, it's
already offered in a third-party addition to the JTable, and is fairly easy to add to our
flight reservation system. The ironic thing is that the "third-party application" that
most people use to sort their tables is provided by Sun itself in its JTable

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 30

http://www.ibm.com/legal/copytrade.shtml

documentation. Makes you wonder why Sun doesn't just include it in Swing
automatically, instead of making people pore through documentation to find it,
doesn't it?

The class that Sun provides is called TableSorter, and it is incredibly easy to use
in any JTable. The TableSorter class itself handles everything automatically,
sorting the data in either ascending or descending order depending on the mouse
button pressed, and also using an arrow to denote the direction of the sort.

With only two lines of code, we can add sorting abilities to the flight reservation
system:
TableSorter sorter = new TableSorter(flightModel, getTblFlights().getTableHeader());

getTblFlights().setModel(sorter);

The image below is what the sorting abilities look like in our application. Notice the
arrow after the word "Tixx." It indicates that the column is sorted, and also indicates
the direction of the sort -- either ascending or descending:

JTable summary

So, in just a few sections and with some new classes, we've managed to transform
our JTable from a stale and boring table into a ... somewhat less boring table (let's
not kid ourselves). In any case, we have added much to our JTable through some
simple lessons, and you should be able to add even more to it by taking these
lessons and building on them. Here's a quick review what we covered:

• You can call set methods on the JTable to quickly change some simple
properties of the table itself. Some of these properties are the grid color,
the grid size, the row height, and other "sugar-coating" items in the
JTable.

• You can change how each cell looks by creating a new TableRenderer.
By creating a TableRenderer, we are also taking all responsibility for
painting the cell, in effect telling the JTable that we will handle all the

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 10 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

painting. Keep this in mind when you create your own TableRenderer --
any errors will become evident quickly. Also, by creating your own
TableRenderer, you take responsibility for the alignment of the data,
which can otherwise be handled by the TableModel.

• You can use the TableModel to change the way in which the data is
aligned in the column (provided you haven't overridden the
TableRenderer) and also to allow for editing in the cells themselves.

• The JTable handles many types of data automatically, including
Strings, Integers, and Doubles. You can take advantage of this fact
by using the built-in renderers and editors for these classes.
Unfortunately, for those classes that aren't automatically supplied by the
JTable, you have to provide your own renderer (which we learned about
here) and editor (which is complex and beyond the scope of this tutorial).

• Finally, you learned how to add sorting abilities to your JTables by using
Sun's TableSorter class. Although Sun provides this class with the
Swing documentation, it is not a supported Swing class, and needs to be
shipped with any classes you create. In future versions of Swing, sorting
will be built in.

The image below shows how the JTable in the flight reservation system looks now:

Section 4. Thread-safe Swing

When the UI freezes

As I mention the word threading, I think I hear a collective groan coming from the
crowd. Yes, even Swing isn't immune from threading issues, and if you're like me,
that's not something you wanted to hear. Threading issues are often difficult things
to code around -- the concepts are abstract, and when errors occur, they're difficult
to test and hard to fix.

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 30

http://www.ibm.com/legal/copytrade.shtml

In Swing, the concepts themselves at least are a lot easier to understand and code
for. For example, in our flight reservation system, suppose the user clicks on the
button to purchase the tickets -- in the current version of the application, this process
completes quickly because we are using a fake database. But suppose the app were
talking to a real database located somewhere else, as in a classic client-server
application. When the user clicks the Purchase button, we need to call and update
the database, and wait for it to return. Are you really going to make your user wait
that entire time, possibly up to a minute, while you process this purchase? Hopefully
not!

There are multiple problems that occur in Swing when someone codes an action like
this. What the user will notice first is that he or she is now locked out of the
application, and can not interact with it any more; Swing operates on a single thread
(the event-dispatch thread), meaning that as the thread sits and waits on the
database call to complete, any other user interaction (trying to select another
destination city, for example) is thrown on the queue for the thread to complete, and
thus is left waiting for the call to the database to complete. We can't lock out our
users from their own application!

Another annoying feature of Swing is that when the Swing thread is busy and the
application needs to repaint itself (if you minimize and then maximize the frame, for
example), the repaint command is also blocked by the database call, and the user
ends up seeing a gray rectangle. This problem will be fixed in the next version of
Swing, but we have to deal with it in the meantime.

These two problems alone should show you how important it is to deal with
threading issues in Swing correctly -- you can't possibly call your application
professional if you lock your users out of it and turn it into a gray rectangle every
time the application needs to run some code that takes longer than a few
milliseconds. Luckily, there are solutions to these common problems.

Working on the Event-Dispatch Thread

Swing contains a method called SwingUtilities.invokeLater() that actually
deals with a problem that is in some ways a mirror image of the one we considered
in the previous section. Instead of finding a solution for performing time-intensive
operations on a separate thread from the event-dispatch thread, this function allows
non-UI related threads to perform tasks on the event-dispatch thread. Why on earth
would anyone want to do this? Well, the easiest example to understand is the
startup of a GUI application. Think about what an application typically does during
startup: open server connections, load preferences, build the GUI, etc. This is the
perfect opportunity to delegate the building of the GUI to the event-dispatch thread,
letting the main application thread continue doing other tasks as the event-dispatch
thread takes care of the Swing-related issues. This solution improves application
start-up performance.

We originally started our flight reservation system like this:
public static void main(String[] args)
{

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 12 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

FlightReservation f = new FlightReservation();
f.setVisible(true);

}

However, we should take advantage of the performance improvements offered by
the SwingUtilities.invokeLater() method and allow the event-dispatch
thread to build the Swing components (granted, in this small application, the
performance improvement is imperceptible, so you'll have to use your imagination
here).

public static void main(String[] args)
{

SwingUtilities.invokeLater(new Runnable()
{

public void run()
{

FlightReservation f = new FlightReservation();
f.setVisible(true);

}
}
);
// possibly open files, get DB connections here

}

However, this still doesn't fix our original problem: moving slow processes off of the
event-dispatch thread. We'll tackle that next.

Third-party Swing threading solutions

In an ironic twist (along the lines of one you've seen already), there is a solution to
the problem I posed in the past two sections, and it's published in Sun's Swing
documentation -- although, like the TableSorter, it's not published as part of the
Java release. Why Sun does this, I'm not sure. Perhaps it's to make sure that you to
read the documentation. In any case, the supplied solution from Sun solves the
problem of running time-consuming processes on the event-dispatch thread.

The class is called SwingWorker, and at its foundation, it works like any other
thread. However, it is specifically tailored to work with Swing apps, by clearly
separating the logic that should be performed off of the event-dispatch thread from
the logic that should be performed on the event-dispatch thread but is dependent on
the results of the logic that isn't on the event-dispatch thread. Confusing? It shouldn't
be, once you see it in action.

Let's look at what happens when the user presses the Search button, and break
down the parts of the call and decide what threads they should operate on.

// should occur on the event-dispatch thread as it deals with Swing
final String dest = getComboDest().getSelectedItem().toString();
final String depart = getComboDepart().getSelectedItem().toString();

// should NOT occur on the event-dispatch thread, as it could be time consuming
List l = DataHandler.searchRecords(depart, dest);

// should occur on the event-dispatch thread, but is dependent on the results from
the previous line
flightModel.updateData(l);

The SwingWorker class requires that all code that shouldn't be performed on the
event-dispatch thread go in its construct() method. The class also requires that

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 30

http://www.ibm.com/legal/copytrade.shtml

all code that should go on the event-dispatch thread, but is dependent on the results
of the construct() method, go in the finished() method. The key link between
the two methods is that the construct() method returns an Object that the
finished() method can access by calling get(). With that in mind, we can
modify the above code, implementing the SwingWorker to remove the blocking
code from the event-dispatch thread, and ensuring that our application won't prevent
the user from interacting with it.

final String dest = getComboDest().getSelectedItem().toString();
final String depart = getComboDepart().getSelectedItem().toString();
SwingWorker worker = new SwingWorker()
{

public Object construct()
{

List l = DataHandler.searchRecords(depart, dest);
return l;

}

public void finished()
{

flightModel.updateData((List)get());
}

};
worker.start();

Section 5. Custom components

Introduction

Have you ever had that feeling that sometimes what you have just isn't enough? Do
you think that Swing provides everything you could possibly need to make your UI
look exactly as you want it to look? Chances are, your answer is yes to the first
question and no to the second. Although Swing provides dozens of components and
widgets, creative people out there are always demanding more.

Luckily, Swing provides the necessary tools to remedy this problem. You want a new
component? No problem. You can whip one up with only a few lines of code. Want
to change the behavior of an already existing component, to tailor it to the way you
want it to look in your own application? That can be easily done as well. By using
Java's class hierarchy, modifying an existing Swing widget to create a custom
component is as simple as subclassing the existing widget. If you want to create a
completely new custom component, it's like building blocks -- just combine the
existing widgets into one bigger widget.

In this section, we'll create custom components in both of these ways, starting with
the modification of an existing Swing component.

Modifying an existing component

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 14 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The first step to modifying an existing component is, naturally, to decide what the
heck you're going to change about it. For the flight reservation system, in this
example, we'll modify the Purchase button, because it's just too important to look like
other buttons in the application. We'll create something called a JCoolButton, which
will hide the border of the button until the mouse is over it; at that point, it will display
the border.

The first step in modifying a component is to subclass it -- in this case, we'll be
subclassing the JButton. By subclassing the constructor and pointing to a new
function (called init() in this example), you can create your own behavior different
from the default component. An important point to remember is that when you
subclass a Swing widget and you intend to let others reuse it, you must subclass
every constructor to ensure that any user will get your desired behavior.

Take a look at some example code. You'll see how the JCoolButton modifies the
JButton to only paint the border when the mouse is over it, creating a hover effect on
the button.

public JCoolButton()
{
super();

init();
}

private void init()
{

setBorderPainted(false);
addMouseListener(new MouseAdapter()
{

public void mouseEntered(MouseEvent arg0)
{

setBorderPainted(true);
}

public void mouseExited(MouseEvent arg0)
{

setBorderPainted(false);
}

}
);

}

Here's the button without the mouseover:

And here it is with the mouseover:

More modifications to JCoolButton

You may notice the JCoolButton isn't quite perfect yet, because the gradient

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 15 of 30

http://www.ibm.com/legal/copytrade.shtml

background is still painted when the mouse isn't over it, and that makes it appear
awkward. We need to add some more code to make the JCoolButton completely
blend into the background JPanel when there is no mouse over it, enhancing the
cool effect of the button.

This brings us to an important lesson in how Swing components work. It's very
important to understand how a component actually paints itself, in what order, and
what the ramifications are of overriding the individual functions. This lesson begins
with the paint() function in JComponent. Because it is in JComponent, every
Swing component contains it, and it is, in fact, the function that is responsible for
painting every single component in Swing.

The paint() documentation tells us that when the method is called, it in turn calls
three other methods in JComponent: first paintComponent(), then
paintBorder(), and finally paintChildren(). From the order in which the
methods are called, you can see that Swing paints itself from the bottom to the top.
The important lesson to learn, though, is that in order to override how a component
looks, you need to override the paintComponent() method, which is directly
responsible for painting how an individual component appears on the screen.

In our JCoolButton, let's fix the problem where the blue gradient background is
painted even when the mouse is not over the button. We want it to blend right into
the background instead. We can accomplish this by overriding the
paintComponent() method and keeping track of when the mouse is over the
button and when it isn't, and painting the button for each state. One important note
before we look at the code: when you override the paintComponent() method,
you are responsible for all painting. In other words, you're responsible for the text,
the background, the decoration -- basically everything but the border.

public void paintComponent(Graphics g)
{

super.paintComponent(g);
if (!mouseOver)
{

g.setColor(getParent().getBackground());
g.fillRect(0,0,getSize().width, getSize().height);
g.setColor(getForeground());
int width = SwingUtilities.computeStringWidth(getFontMetrics(getFont()), getText());
int height = getFontMetrics(getFont()).getHeight();
g.drawString(getText(), getWidth()/2 - width/2, getHeight()/2 + height/2);

}
}

Here's our newly modified button without the mouseover:

And here it is with the mouseover:

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 16 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Building a completely new component

You creative types may feel constrained by the existing Swing components -- not
only by the way they look, but by how they work. You may think that there are no
existing components that can do what you want a widget to do. You have a vision,
and you want it in your UI.

Swing gives you the ability to realize your dreams, to let your creative impulses run
wild, and to create any component with any functionality you desire -- and it takes
only four steps:

1. Identify the existing Swing widgets you need to combine to make your
new widget. The existing Swing components provide building blocks that
should be used for the new widgets. Their advantage is obvious -- they're
complete components that have been extensively tested.

2. Combine the widgets together visually to make the component look how
you want it to look. The best way to do this is to add the chosen
components to a JPanel, being sure to use a layout manager (because
you're not sure how big or small other users may want it).

3. Make the components interact together properly to get the desired
behavior from the components. This would involve creating private
functions to handle events, route data from one part to the other, have the
whole thing paint itself properly -- basically, anything you need to do to
make it behave like you want it to.

4. Wrap a public API around the finished component so that others can
understand how to use it easily.

The JMenuButton

OK, enough with the abstract descriptions. Let's get to some examples! We'll create
a new component and go through the four steps outlined in the previous section to
show you how you can create a brand new component.

The component we'll be creating is a JMenuButton, a new component that acts like a
normal JButton, but with additional functionality: The user can press an arrow button
on the side of the JButton to reveal additional choices. If this description is confusing
(as I'm sure it is), think about the Back button on your Web browser: clicking it sends
you back to the last Web page you were reading, but clicking and holding it pops up
a list of the pages in your recent browsing history. This is essentially a JMenuButton,
and we'll be building one of these in Swing. You'll notice that something like this
doesn't exist in Swing currently, but all the building blocks are there to build it.

Here's a look at the finished product, the goal we are aiming for:

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 17 of 30

http://www.ibm.com/legal/copytrade.shtml

One further note: We won't be implementing this component in the flight reservation
system as there's no appropriate place for it. Nonetheless, feel free to use it in your
own applications as you see fit.

Step 1: Choose components

We'll need four components to create the JMenuButton:

• A JButton that serves as the main button (the Back portion of the
component). This serves as the primary choice in the component.

• A JButton that serves as the arrow button. The arrow button displays the
pop-up menu that contains the alternative choices in the component.

• A JPopupMenu that will be displayed whenever the arrow button is
pressed and the alternative choices are displayed.

• JMenuItems that will go into the JPopupMenu and serve as the alternative
choices.

Step 2: Lay out the components

As I pointed out in Building a completely new component, the easiest way to create
a new component is to add existing components to a JPanel. In our example, we will
use a JPanel as the base of the component, and place the two buttons on top of it.
In fact, our JMenuButton subclasses from JPanel, and not any of the components
that it contains. Choosing the layout for our components on the JPanel is
straightforward enough, and we can just use a BorderLayout.

this.setLayout(new java.awt.BorderLayout());
this.add(getBtnMain(), java.awt.BorderLayout.CENTER);
this.add(getBtnArrow(), java.awt.BorderLayout.EAST);

Step 3: Internal interaction

The third step in creating a new component is to get it working properly (obviously).
In this example, we need to get the arrow button to launch the pop-up menu
whenever it is pressed. Note that the main button doesn't necessarily do anything
internally. Externally, it needs to be listened to, but internally, it doesn't change the
state or appearance of the component, and thus can be ignored in this step. Also,

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 18 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

the individual JMenuItems in the JPopupMenu can be ignored internally as well -- we
don't even have any added when we start, and they don't change the component,
either.

Here's the code that will handle the internal interaction of the components:
getBtnArrow().addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

getPopup().show(getBtnMain(), 0, getHeight());
}

}
);

Step 4: Create a public API

The final step is perhaps the most important in creating a new component -- you
must wrap the component in an easy-to-use public API, so that other people who
want to use your component can do so easily. After all, what's the point of creating
something new if you don't let anyone else use it? Creative genius should be shared,
after all.

Any time you are creating a public API wrapper around your component, you should
aim to keep the format the same as existing Swing components -- use get/set
methods, and try not to change any behavior that UI developers would expect from a
Swing component (for example, don't change any methods in JComponent that UI
developers would expect to act the same from component to component).

There are two areas that we need to be concerned with in our JMenuButton. First,
we need to be able to add alternative choices to the JMenuButton. We can create a
new method to handle this:

public void add(JMenuItem item)
{

getPopup().add(item);
}

Second, we need to be able to handle action events that the main button and the
alternative choices could trigger -- after all, users need to know when a button is
pressed or an alternative choice is selected.

public void addActionListener(ActionListener l)
{

getBtnMain().addActionListener(l);
for (int i=0; i<getPopup().getSubElements().length; i++)
{

JMenuItem e = (JMenuItem)getPopup().getSubElements()[i];
e.addActionListener(l);

}
}

public void removeActionListener(ActionListener l)
{

getBtnMain().removeActionListener(l);
for (int i=0; i<getPopup().getSubElements().length; i++)
{

JMenuItem e = (JMenuItem)getPopup().getSubElements()[i];
e.removeActionListener(l);

}

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 19 of 30

http://www.ibm.com/legal/copytrade.shtml

}

That's it. That's the end of the process to create JMenuButton. After only a few
sections, we've managed to create a new and functional Swing component. By
following the four steps outlined in this section, you too can create your own
component.

The JMenuButton isn't meant to be a professional and polished component -- it
merely exists to serve as an example. Thus, if you choose to use it in your own
applications, I'd suggest additional public methods and further testing.

Section 6. Custom look and feel

Background

One of the coolest features of Swing is its ability to easily change the look and feel of
an application. The look and feel of an application is a combination of two things
(and remember these terms, as I'll refer to them throughout this section):

• The look, which is how the components appear visually: what colors they
use, what fonts they use, shading, etc.

• The feel, which is how the components interact with users: how they react
to a right-click, how they react to mouse drags, etc.

The look and feel of an application is governed by the Swing class
javax.swing.LookAndFeel; we'll refer to an instance of this generically as a
LookAndFeel. There's a small but distinct difference between the look and the feel,
one that we'll examine in detail when we talk about Synth.

Another ironic thing about how custom LookAndFeels work in Swing: the concepts
and code needed to create a new javax.swing.LookAndFeel class are complex
(and beyond the scope of this tutorial), but once the javax.swing.LookAndFeel
is done and packaged, it is incredibly easy to make your application use it.

In fact, you can change the look and feel of your entire application by adding only
one line of code!
UIManager.setLookAndFeel(new WindowsLookAndFeel());

Swing's LookAndFeels

Swing comes installed with multiple LookAndFeels pre-installed. These
LookAndFeels match up to the common OSes on the market right now, but have an
unfortunate side-effect: the LookAndFeel that resembles Windows XP is only

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 20 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

available on Windows, the Macintosh LookAndFeel is only available on Mac OS, and
the GTK LookAndFeel is only available on Linux systems. Sun has also made the
Ocean LookAndFeel, an attempt to provide a good-looking cross-platform look and
feel.

Let's take a look at how our flight reservation system looks in the different installed
LookAndFeels (though these will not include Mac or GTK, because I'm writing this
tutorial on a Windows machine). Remember, only one line of code needs to be
changed to completely change how our updated flight reservation system application
looks.

Here's the Windows LookAndFeel:

Here's the Motif LookAndFeel:

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 21 of 30

http://www.ibm.com/legal/copytrade.shtml

And here's the Ocean LookAndFeel:

UIManager

The easiest way to start changing the look and feel of your apps is to learn how to
use the UIManager. The UIManager provides access to everything that has to do
with the installed look and feel -- and by everything, I mean everything. Every
possible color, every possible font, and every possible border can be changed and

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 22 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

manipulated by the UIManager. The UIManager acts as a HashTable that contains
all these values, and ties them to Strings that act as the key in the hashtable
relationship.

Therein lies the difficult part of working with the UIManager -- these Strings that
act as the keys are not documented anywhere on the Sun site. Fortunately, by
examining the installed LookAndFeels that come shipped with Swing, you can see
what keys Sun used and use them yourself. It's unfortunate that these keys aren't
documented anywhere, as this only adds to the complexity of creating a new custom
look and feel.

We'll use the UIManager to change the colors for the labels from blue to green and
the font that the entire application uses:

Font font = new Font("Courier", Font.PLAIN, 12);
UIManager.put("Button.font", font);

UIManager.put("Table.font", font);
UIManager.put("Label.font", font);
UIManager.put("ComboBox.font", font);
UIManager.put("TextField.font", font);
UIManager.put("TableHeader.font", font);
UIManager.put("Label.foreground", Color.GREEN);

Here's our newly tweaked application:

Packing it all into a LookAndFeel

Of course, this type of coding isn't conductive to object-oriented programming, as
you don't want to retype these lines of code in every application that needs to have
this look and feel. You also can't easily let others use your new creation this way.

Sun's solution is to provide the javax.swing.LookAndFeel class, which lets you

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 23 of 30

http://www.ibm.com/legal/copytrade.shtml

easily package up all the information needed to create a look and feel for your
application. It also lets you describe how all the pieces come together to create the
look and feel you want to distribute to everyone.

There are two ways to create a LookAndFeel. One is to subclass the
javax.swing.LookAndFeel class itself, though this is the more difficult option.
The better solution is to subclass one of the existing LookAndFeels provided by
Swing -- either the javax.swing.plaf.metal.MetalLookAndFeel or the
javax.swing.plaf.basic.BasicLookAndFeel (a building block look and feel
that doesn't have any visuals but is provided to serve as a basis for others to build
on).

There's also some basic information that every LookAndFeel needs to contain --
things that tell Swing about the LookAndFeel and let others know about it as well,
should you decide to package it up and distribute it.

• getDescription(): A description of the look and feel.

• getID(): A unique ID that can be used to identify the look and feel.

• getName(): The name of the look and feel.

• isNativeLookAndFeel(): Indicates whether this look and feel is
native to the OS; any custom look and feel should return true from this
function.

• isSupportedLookAndFeel(): Should also return true for any custom
look and feel.

Let's look at this code in our new custom LookAndFeel class, the
FlightLookAndFeel.

public String getDescription()
{

return "The Flight Look And Feel is for the Intermediate Swing tutorial";
}

public String getID()
{

return "FlightLookAndFeel 1.0";
}

public String getName()
{

return "FlightLookAndFeel";
}

public boolean isNativeLookAndFeel()
{

return true;
}

public boolean isSupportedLookAndFeel()
{

return true;
}

More on the FlightLookAndFeel

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 24 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The final step in creating the FlightLookAndFeel class is to actually describe
what the look and feel should change. In the example discussed in UIManager, we
were merely overriding certain colors and fonts that were already in the
MetalLookAndFeel. We are going to reuse this code to create our look and feel.

There's a class that functions like the UIManager called the UIDefaults. The
difference between these is subtle -- the UIManager should be used outside of the
LookAndFeel classes, as it represents all the look and feel values after it is loaded.
The UIDefaults represents these same values as they are being loaded.

The LookAndFeel class has a getDefaults() method that loads up these
values, and then uses them to create the look and feel. In order to get our own
values in there instead of the Metal ones we are overriding, we must first call the
MetalLookAndFeel's getDefaults() function to load every value that we are
not overriding (if we didn't do this, we'd end up having a weird-looking look and feel,
missing colors, sizes, and so on). After letting the MetalLookAndFeel have the
first stab at creating everything it needs, we can just override the values we want
and create the FlightLookAndFeel the way we want it to look.

public UIDefaults getDefaults()
{

UIDefaults def = super.getDefaults();
Font font = new Font("Courier", Font.PLAIN, 12);
def.put("Button.font", font);
def.put("Table.font", font);
def.put("Label.font", font);
def.put("ComboBox.font", font);
def.put("TextField.font", font);
def.put("TableHeader.font", font);
def.put("Label.foreground", Color.GREEN);
return def;

}

More on custom LookAndFeels

While the previous sections were sufficient to create a custom look and feel that
dealt with color and fonts only, it really isn't a complete enough lesson in how to
create a complete custom look and feel, one that would be comparable to the
WindowsLookAndFeel or the MotifLookAndFeel. These go far beyond just
modifying the colors and fonts; they change nearly everything from the default
implementation -- how each component is drawn, how it reacts to mouse events,
where components are placed when it has items added to it, and so on. Creating a
complete look and feel is not an easy task.

This tutorial will not address the many steps need to create a custom look and feel.
In fact, an entire tutorial could be created just to teach you how to create a custom
look and feel; it is unfortunately that complex an undertaking. To give you a sense of
things, the task requires the user to create a new class for every Swing component,
outlining how it should look and feel. That's roughly 60 classes that you would need
to create -- not something that can be done in an afternoon, and especially not
something that could be summarized in a few sections in this tutorial.

As further proof as to the complexity of creating a complete custom look and feel,

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 25 of 30

http://www.ibm.com/legal/copytrade.shtml

the number of examples available on the Internet is amazingly small. Only about 20
to 30 commercial LookAndFeels are available for download -- and that's with Swing
being on the market for seven years.

Fortunately, in J2SE 5.0, Swing introduced a new class that has made the process
much easier and reduced the time needed to create a custom look and feel from
about three months (as it required in 1.4) to three weeks (as it now requires). We'll
discuss it in the next section.

Synth

Synth is the newest LookAndFeel addition to Swing, but it's kind of a misnomer. It
isn't really a LookAndFeel at all, which you'd find out if you tried to add it to your
application: your application would turn completely white. Nor can you even modify
the complete look and feel of an application once you begin using Synth. Synth
allows you to only change the look of an application -- the borders, the colors, the
fonts. It does not allow you to change how the application feels.

Synth in a nutshell is a skin that you install on your application. The skin contains
information describing how to use external images and custom paint code to create
the look, parsing this information from a single XML file that is loaded when the
Synth LookAndFeel is installed in the application. The biggest advantage is the time
savings it offers users -- instead of having to subclass 60 Java classes, you merely
need to create one XML file and some graphics. The result of this advantage is a
potential explosion in the number of custom LookAndFeels available for developers
to choose from; this is Sun's ultimate goal in releasing this new class. In case you
haven't been following the drama, Swing for years was criticized for being ugly. The
Ocean LookAndFeel alleviated that complaint somewhat, and Synth offers the
potential for creative developers to make some very nice LookAndFeels in the near
future.

For a complete lesson on how to use Synth and how it will fit into your application,
check out my Advanced Synth article published a few months ago (see Resources
for a link), which will take you step-by-step through the process of creating a new
custom look and feel using Synth.

Section 7. Wrap-up

Summary

This tutorial dealt with some intermediate-level issues that you may encounter when
working with Swing when developing UI applications. It is meant to build upon the
knowledge you gained in the Introduction to Swing tutorial, or to build on your

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 26 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/edu/j-dw-java-intswing-i.html
http://www.ibm.com/legal/copytrade.shtml

already existing Swing knowledge. It dealt with some common issues that UI
developers come across in their applications. I've attempted to pick out a
combination of the most interesting and most important issues.

As I've discussed many times throughout both tutorials, these tutorials are by no
means exhaustive in their coverage of Swing -- there's just far too much to learn to
be summarized in two tutorials. Hopefully what you've learned in this tutorial will not
only improve your knowledge in a few fields of Swing, but pique your interest in
Swing as a whole and lead you to delve more into some areas of it.

In this tutorial, through only a few quick lessons, we've managed to turn our example
application, the flight reservation system, from a basic application that merely
provided functionality to a more professional application that solved all the issues
that Swing applications need to deal with. We started with an application that looked
like this:

And turned it into this:

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 27 of 30

http://www.ibm.com/legal/copytrade.shtml

For completeness, let's review the important lessons learned from this tutorial:

• Intermediate-level JTable: In addition to learning how many of a table's
properties can be changed to quickly change how a table looks, you also
learned the following things about the JTable:

• TableRenderers: You learned that you aren't constrained by the
JTable's built-in color scheme for its cells. By creating your own
TableRenderer, you can control how each cells appears in the
table, when it is selected or deselected, and even how to provide
feedback about the application (as when we grayed out unavailable
flights).

• TableModel: In addition to controlling the data, the TableModel
can also control how data is aligned in the column, and whether a cell
can be edited.

• TableEditors: The JTable has many built-in editors for common
classes that appear in data (Strings, Integers), but creating a
custom editor for other data is difficult and beyond the scope of this
tutorial.

• TableSorter: Users have come to expect that they'll be able to sort
their table's data in a meaningful way by clicking on the column
headers. The JTable that is shipped with Swing does not support
sorting at all, but Sun provides a TableSorter class (that isn't
shipped with the JDK) that takes care of sorting for you.

• Thread safety: Thread safety is an important issue in Swing, as poor
thread management can lead to a user getting locked out of the
application or an ugly gray rectangle appearing instead of the application

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 28 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

UI.

• SwingUtilities.invokeLater() should be used whenever a
thread besides the event-dispatch thread needs to perform UI work.

• The SwingWorker class (another class not shipped in the JDK but
published by Sun) should be used on the event-dispatch thread
whenever a time-consuming action (like querying a database) must
be performed.

• Custom components: While Swing provides nearly every component
you could want, sometimes these components don't exactly work the way
you want them too, or sometimes even the many components of Swing
aren't enough to provide the widget your application needs. Modifying an
existing component allows you to change the way a Swing widget works
in your application. The best way to do this is to subclass the existing
Swing widget and override the paintComponent() method to tailor the
component to your needs. Creating a new custom component allows you
to create original one-of-a-kind components not contained in Swing. The
steps to follow to create a new component are to identify the components
you'll need, lay them out properly, get them working with each other to get
the new component working properly, and finally to wrap a public API
around the new component to make it easy to work with.

• Custom look and feel: Creating a custom look and feel is a very difficult,
complex, and time-consuming process, and probably deserves a tutorial
all its own. However, there are easy ways to quickly change some
behavior in your application that you learned in this tutorial:

• Use the UIManager to override the properties used in an existing
LookAndFeel, and supply your own colors, fonts, and borders to tailor
the existing look and feel to your needs.

• Use the new Synth LookAndFeel, an addition to Swing that allows
you to create custom look and feels far easier and quicker than
before.

ibm.com/developerWorks developerWorks®

Intermediate Swing
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 29 of 30

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• See this quick how-to on creating custom table cell editors.

• Visit the Sun tutorial on Swing, which is a good follow-up to this tutorial and will
cover any components not covered here.

• Read the Swing Javadoc to see all the possible functions you can call on your
Swing components.

• The JavaDesktop Web page offers the newest techniques in Swing.

• John Zukowski's Magic with Merlin series and Taming Tiger series cover Swing
and related topics regularly.

• Michael Abernethy has penned several more advanced Swing-related articles,
including "Ease Swing development with the TableModel Free framework"
(developerWorks, October 2004), "Go state-of-the-art with IFrame"
(developerWorks, March 2004), and "Advanced Synth" (developerWorks,
February 2005).

• You'll find articles about every aspect of Java programming, including all the
concepts covered in this tutorial, in the developerWorks Java technology zone.

• eclipse.org is the official resource for the Eclipse development platform. Here
you'll find downloads, articles, and discussion forums to help you use Eclipse
like a pro.

• The developerWorks Open source zone has an entire section devoted to
Eclipse development.

Get products and technologies

• Download the swing2.jar used in this tutorial. This also includes the
TableSorter and SwingWorker classes that Sun doesn't ship with the JDK
but includes in the Swing documentation.

Discuss

• The Client-side Java programming discussion forum is another good place for
assistance with Swing.

• Get involved in the developerWorks community by participating in
developerWorks blogs.

About the author

Michael Abernethy
Michael Abernethy is an IBM employee who is currently the test team lead for the
WebSphere System Management team, based in Austin, Texas. Prior to this
assignment, he was a UI developer working in Swing at multiple customer locations.

developerWorks® ibm.com/developerWorks

Intermediate Swing
Page 30 of 30 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://javaalmanac.com/egs/javax.swing.table/CustEdit.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/j2se/1.4.2/docs/api/
http://community.java.net/javadesktop/
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=merlin:
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=taming+tiger:
http://www.ibm.com/developerworks/java/library/j-tabmod/index.html
http://www.ibm.com/developerworks/java/library/j-iframe/index.html
http://www.ibm.com/developerworks/java/library/j-synth/
http://www.ibm.com/developerworks/java/
http://www.eclipse.org
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
swing2.jar
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=171&cat=10
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	Tools and source downloads

	The sample application
	Refresher
	Limitations of the application
	Sample application enhancements

	Intermediate JTable
	Introduction
	JTable properties
	TableRenderer
	TableModel
	Sorting
	JTable summary

	Thread-safe Swing
	When the UI freezes
	Working on the Event-Dispatch Thread
	Third-party Swing threading solutions

	Custom components
	Introduction
	Modifying an existing component
	More modifications to JCoolButton
	Building a completely new component
	The JMenuButton
	Step 1: Choose components
	Step 2: Lay out the components
	Step 3: Internal interaction
	Step 4: Create a public API

	Custom look and feel
	Background
	Swing's LookAndFeels
	UIManager
	Packing it all into a LookAndFeel
	More on the FlightLookAndFeel
	More on custom LookAndFeels
	Synth

	Wrap-up
	Summary

	Resources
	About the author

